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CHAPTER 1

INTRODUCTION

1.1 Motivation

The study of atmospheric turbulence is essential for the understanding of many envi-

ronmental processes, such as transport of heat, momentum and matter. It has major impact

on weather and climate modeling and needs to be taken into account for the design and

operation of a wide variety of man-made structures, including buildings, bridges, cars and

aircrafts. Hence the measurement of turbulence is of high importance.

Wyngaard (1981) describes advantages and disadvantages of several in-situ measurement

devices. The described measurement devices include cup-, propeller- and ultrasonic anemome-

ter (sonic). In Muschinski and Lenschow (2001), the sonic anemometer was highlighted as

a highly reliable device, which has had significant impact on the research of atmospheric

turbulence. However, it has to be installed carefully to avoid resonances that may corrupt

the measurement as pointed out by Siebert and Muschinski (2001).

Two sonics described by R.M. Young Company (1999) were purchased, installed on tripods

and used to measure atmospheric turbulence data in the surface layer. These sonics will be

part of an integrated measurement system. This integrated system will allow the user to

take advantage of the capabilities of diverse turbulent measurement systems and provide

extended opportunities to study atmospheric turbulence.
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1.2 History and Current State

Early work on turbulence was done by Taylor (1938) and Simmons et al. (1938). Kol-

mogorov (1941a) and Kolmogorov (1941b) describe the energy dissipation of turbulence

and the local structure of turbulence, respectively. At the same time, Obukhov (1941) dis-

cussed the spectral energy distribution of a turbulent flow.

Later the classical description of surface layer turbulence was published by Monin and

Obukhov (1954), providing a generalization of the law of the wall. Monin (1970) gives

a review on the research of the ABL, including a summary of what is now known as the

Monin-Obukhov similarity theory. An experimental investigation of the profile-functions

resulting from the Monin-Obukhov theory and a generalization of the turbulence spectra

was given by Kaimal et al. (1972) based on the so called Kansas 1968 experiment.

The theory wave propagation through locally homogeneous and isotropic turbulence was

first described by Tatarskii (1961) and Tatarskii (1971). This was an especially important

contribution for the later development and understanding of atmospheric and oceanic re-

mote sensing.

Recently, the state of atmospheric turbulence research has been reviewed by Muschinski

and Lenschow (2001). They confirmed the major progress made in the 1970s in the field,

but also pointed out that since then the growth of the fundamental research has significantly

slowed down. During the workshop that was the basis of their paper, they identified five

areas, that needed further research. One of these was In-Situ Measurements. The potential

of this area was illustrated by the example of the ultrasonic-anemometer (sonic) and its im-

pact on the research. Another area was remote sensing, illustrated by the impact of Radar

and Lidar Remote Sensing.

In this context, it should be noted, that while remote sensing techniques can probe a large

volume or area of the atmosphere, they often suffer from a coarse resolution compared to

in-situ techniques. This is because they measure spatial averages (path averages, area av-

erages, or volume averages) rather than point values. However, to calibrate remote sensors
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and to confirm their proper operation, in-situ measurements can serve as a highly accurate

reference. Thus the combination of both techniques is mutually beneficial.

In addition, the emerging computer, network, timing and data acquisition technology has

opened up a multitude of fundamental research opportunities on turbulence by allowing to

better merge data and measurement systems.

1.3 Summary of Chapters

This chapter was an outline of atmospheric turbulence and its importance. It also gave

a summary of the historical milestones and the current state of turbulence research.

Chapter two explains the physical structure of turbulence based on the cascading process

in section 2.1. The following section 2.2 reviews the classical theory of locally homoge-

neous and isotropic turbulence. This includes an explanation of the autocovariance function

(ACF), the structure function, the power spectrum and the wavenumber spectrum. The in-

tegral time and the length scales are discussed as well, as the expected 5/3 and the 2/3 laws

in the inertial subrange for the power spectrum and the structure function, respectively. De-

scription of the 4/3 ratio between longitudinal and the transverse components of isotropic

turbulence concludes this section. Section 2.3 discusses the Monin-Obukhov theory and

gives definitions for the atmospheric boundary layer and the atmospheric surface layer.

The impact of the roughness length is discussed. As a next step, the turbulent fluxes and

the turbulent scaling parameter are defined. Section 2.3 ends with an explanation of the

density stratification and its impact on stability conditions, the logarithmic law of the wall

and its generalization with the correction function for different stability conditions.

The third chapter contains a description of the measurement and data storage system. This

includes the measurement principle of the sonic in section 3.1, providing a basic under-

standing of how it extracts temperature and velocity from the environment. Then the data

logging software is described by means of a program structure diagram in section 3.2. Fi-
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nally the time stamps are validated in section 3.3 and the file format of the storage data is

shown in section 3.4, respectively.

In the fourth chapter, the experiment location and the setup are described in section 4.1. A

note on the weather conditions during the experiment is included in section 4.2 and the co-

ordinate systems are defined in section 4.3. Section 4.4 explains how the data was prepared

for the analysis. The data preparation includes a description of the raw data, a discussion

on the averaging interval, the concept of data rotation between coordinate systems and data

detrending. Finally an example is given for raw, rotated and detrended data.

In section 4.5 the data is analyzed by determining the noise floor and discussing the mea-

surement accuracy. Followed by a discussion of the autocovariance function and the struc-

ture function in time domain representation, the periodogram and the power spectrum are

used for a spectral analysis. Based on the time and spectral domain description, the inertial

subranges are shown and the velocity and temperature structure parameters are estimated.

Finally the length scale and the time scale of turbulence are computed and isotropy is dis-

cussed.

The last chapter, five, briefly summarizes the results with view on the theoretical predic-

tions, concludes the validity of the sonic measurements and gives a few suggestions for

further improvement for future turbulence measurements with the the presented system.
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CHAPTER 2

SURFACE LAYER TURBULENCE THEORY

In this chapter, the basic theory for the analysis of turbulence measurements in the

atmospheric surface layer is summarized. In section 2.1 a qualitative description of the

structure of turbulence is stated, to provide an understanding for the two components of the

surface-layer turbulence theory. These are the classical theory of locally homogeneous and

isotropic turbulence, reviewed in section 2.2, and the Monin-Obukhov theory, discussed in

section 2.3.

2.1 The Structure of Atmospheric Turbulence

One simple way to explain the physical process of atmospheric turbulence is to study

its spectrum. Figure 2.1 shows schematically a typical turbulence spectrum. The spatial

wavenumber κ is a (reciprocal) measure of the size l of the turbulent eddies,

κ ∼
1

l
, (2.1)

and the wavenumber spectrum is the energy density depending on eddy size. Through

Taylor’s Frozen Turbulence Hypothesis (Taylor, 1938), which assumes that the mean wind

speed Ū is significantly larger than the rotation velocity of the eddies, the equation relating

spatial wavenumber κ and frequency ω can be written as

κ =
ω

Ū
. (2.2)
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Figure 2.1. Spectrum of atmospheric turbulence; from Garratt (1992) [p.17]

In figure 2.1 three different ranges are shown, the energy input range, the inertial subrange

and the viscous dissipation range.

In the energy input range turbulence is created through surface stress resulting in overturn-

ing air or through heating or cooling that create convection. In this range the wavenumber

or frequency is low, which means that the eddies are large. In the atmospheric surface layer,

the boundary of the energy input range to the inertial subrange is typically on the order of

meters to tens of meters. Eddies in the energy input range break up and enter the inertial

subrange, where they get smaller and smaller through a cascading process. During this

process, the kinetic energy is transferred down to smaller scales, but not dissipated. This

goes on until the third region, the viscous dissipation range, is reached. Here the eddies

get so small that they are converted to heat. The boundary between the viscous dissipation

range to the inertial subrange is typically on the order of mm’s. In the atmospheric surface

layer, the lower and upper boundaries of the inertial subrange are usually estimated as

1

z
� κ �

1

ηk

, (2.3)
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where z is the height above ground level(AGL) and

ηk =

(

ν3

ε

)
1

4

(2.4)

is known as the Kolmogorov scale, where ν is the kinematic viscosity of air and ε is the

dissipation rate of turbulent kinetic energy per mass unit, or simply the energy dissipation

rate.

2.2 Theory of Locally Homogeneous and Isotropic Turbulence

Subsection 2.2.1 introduces the autocovariance functions (ACF) Bf (τ) and Bf (r), the

structure functions Df (τ) and Df (r) for random time functions f (t) and one-dimensional

spatial fields f (x), respectively. Here τ is the time lag and r is the spatial lag in the x-

direction. In Subsection 2.2.2, the frequency spectrum Wf (ω) is expressed in terms of

Bf (τ) and Df (τ), respectively, by means of the Wiener-Khintchine relationships. Cor-

respondingly, the one-dimensional wave-number spectrum Vf (κ) is expressed in terms of

Bf (r) and Df (r) in subsection 2.2.3. The integral time scale τi, the integral length scale

ri and the spectral widths of the power spectrum ωi and the wavenumber spectrum κi are

defined in subsection 2.2.4. Subsection 2.2.5 introduces the inertial-range laws for Df (r)

and, by means of Taylor’s hypothesis, for Df (τ). Subsection 2.2.6 gives the inertial-range

relationships between the structure functions and the power spectra of the stream-wise

velocity u, the lateral velocity v, and the vertical velocity w in the case of locally homoge-

neous and isotropic inertial-range turbulence.

2.2.1 Autocovariance Function and Structure Function

Following Tatarskii (1971)[p.5], the temporal ACF Bf(t1, t2) of a random time function

f(t) is defined as
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Bf(t1, t2) = 〈[f(t1) − 〈f(t1)〉][f(t2) − 〈f(t2)〉]
∗〉 (2.5)

where 〈〉 denotes the ensemble average and [ ]∗ denotes the conjugate complex of the

quantity in the brackets. t1 and t2 are two consecutive measurement times. If f(t) is real

and stationary, then Bf (t1, t2) can be rewritten as a function of the time lag τ only:

Bf(τ) = 〈[f(t + τ) − 〈f〉][f(t) − 〈f〉]〉, (2.6)

where

〈f〉 = 〈f(t1)〉 = 〈f(t2)〉 (2.7)

with

Bf(τ) = Bf(−τ) (2.8)

and

Bf(τ) ≤ Bf (0) = σ2
f(t) (2.9)

where σ2
f is the variance (ACF at zero lag). That is, Bf (τ) is an even function and attains

maximum value at τ = 0.

Stationarity means that the statistics of the random process are time-invariant. This implies

that variance and mean of the process are assumed to be independent of time:

σ2
f (t) = Bf (0) = const. (2.10)

and

〈f(t)〉 = 〈f〉 = const. (2.11)

This, however, is not generally the case for surface layer turbulence, because all statistics

typically undergo a diurnal cycle. But if the observed time interval is short enough com-
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pared to the diurnal cycle, the random process describing the surface layer turbulence can

be approximated to have a stationary first increment :

Ff (t) = ξf(t + T ) − ξf(t) (2.12)

with

ξf(t) = f(t) − 〈f(t)〉, (2.13)

which implies that the ensemble average is assumed to vary only linearly with time. From

here, there are two possible ways to proceed. The first is to detrend the data, which makes

the data stationary again, and to consider the ACF of the detrended process. The second

approach is to introduce the structure function D(t1, t2) as first suggested by Kolmogorov

(1941a):

Df(t1, t2) = 〈{[f(t1) − 〈f(t1)〉] − [f(t2) − 〈f(t2)〉]}
2〉 (2.14)

For a linearly varying mean (as assumed with stationary increments) the structure function

becomes a function of the time lag τ = t1 − t2 only:

Df(t1, t2) = Df(t1 − t2) = Df(τ) = 〈{[f(t + τ) − 〈f(t + τ)〉] − [f(t) − 〈f(t)〉]}2〉.

(2.15)

For the more restrictive case of a constant mean

〈f(t1)〉 = 〈f(t2)〉 = const. (2.16)

we have

Df(τ) = 〈{[f(t + τ) − f(t)]}2〉. (2.17)

For an even more restrictive condition of stationarity, a relation between the ACF and the

structure function can be written as:

Df(τ) = 2[Bf(0) − Bf(τ)]. (2.18)

9



Similarly, the spatial ACF Bf(r) and the spatial structure function Bf (r) can be expressed:

Bf (r) = 〈[f(x + r) − 〈f〉][f(x) − 〈f〉]〉 (2.19)

and

Df(r) = 2[Bf(0) − Bf(r)], (2.20)

where r is the spatial lag in the x-direction.

2.2.2 Power Spectrum

The relationships between the power spectrum W (ω) and the temporal ACF B(τ) can

be written in terms of the Fourier transformation and the inverse Fourier transformation as

Wf(ω) =
1

2π

∫

∞

−∞

e−jωτBf (τ) dτ (2.21)

and

Bf(τ) =

∫

∞

−∞

ejωτWf (ω) dω. (2.22)

These two equations are known as the Wiener-Khinchine relationships. Inserting equation

2.22 into equation 2.18 gives a relationship between D(τ) and W (ω):

Df(τ) = 2

∫

∞

−∞

[1 − cos(ωτ)]Wf(ω) dω. (2.23)

Differentiation with respect to τ leads to expressions of Wf(ω) in terms of D′

f (τ) and

D′′

f(τ), respectively:

Wf(ω) =
1

2πω

∫

∞

0

sin(ωτ)D′

f(τ) dτ (2.24)

and

Wf(ω) =
1

2πω2

∫

∞

0

cos(ωτ)D′′

f(τ) dτ. (2.25)
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2.2.3 Wavenumber Spectrum

Similar to the preceding section, the Wiener-Khinchine relationships between the one-

dimensional wave-number spectrum along the x-direction Vf(κ) and the spatial ACF Bf(r)

can be written:

Vf(κ) =
1

2π

∫

∞

−∞

e−jκrBf (r) dr (2.26)

and

Bf (r) =

∫

∞

−∞

ejκrVf(κ) dκ. (2.27)

Inserting equation 2.27 into equation 2.20 gives a relationship between Df(r) and Vf(κ):

Df (r) = 2

∫

∞

−∞

[1 − cos(κr)]Vf(κ) dκ. (2.28)

Differentiation with respect to r leads to expressions of Vf(κ) in terms of D′

f (r) and D′′

f (r),

respectively:

Vf(κ) =
1

2πκ

∫

∞

0

sin(κr)D′

f(r) dr (2.29)

and

Vf(κ) =
1

2πκ2

∫

∞

0

cos(κr)D′′

f(r) dr. (2.30)

2.2.4 Integral Scales and Spectral Widths

In Tatarskii (1971) [p.10], the integral time scale is defined as

τi =
1

Bf (0)

∫

∞

−∞

Bf (τ) dτ, (2.31)

and the spectral width of the power spectrum is defined as

ωi =
1

Wf (0)

∫

∞

−∞

Wf(ω) dω (2.32)
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with the following relationship between the two:

τiωi = 2π. (2.33)

For the integral length scale by means of the Taylor’s Hypothesis we can write:

ri =
1

Bf(0)

∫

∞

−∞

Bf(r) dr (2.34)

and for the spectral width of the wavenumber spectrum

κi =
1

Vf (0)

∫

∞

−∞

Vf (κ) dκ (2.35)

with the following relationship:

κiri = 2π. (2.36)

2.2.5 Inertial Subrange and Structure Parameter

According to Kolmogorov (1941b) and Obukhov (1941) Df (r) is proportional to r2/3

in the inertial subrange

Df (r) = C2
fr2/3, (2.37)

where C2
f is referred to as the structure parameter of f . From the relationship between

Vf (κ) and D′

f (r) [Equation 2.29], we find

Vf (κ) =
1

2πκ

∫

∞

0

sin κr

[

2

3
C2

fr
2

3
−1

]

dr

=
C2

f

3πκ

∫

∞

0

sin(κr)r
2

3
−1dr

=
C2

f

3πκ
κ−

2

3 Γ(2/3) sin(
π

3
)

= 0.1244C2
fκ

−
5

3 .

(2.38)
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Taylor’s hypothesis leads to a simple relationship between time lag and stream-wise spatial

lag:

r = Uτ, (2.39)

where U is the magnitude of the ensemble-averaged wind vector. Inserting into (2.37) gives

Df (τ) = C2
fU

2/3τ 2/3. (2.40)

From the relationship between Wf (ω) and D′

f (τ) [Equation 2.24], we find

Wf (ω) =
1

2πω

∫

∞

0

sin ωτ

[

2

3
C2

fU
2/3τ

2

3
−1

]

dτ

=
C2

fU
2/3

3πω

∫

∞

0

sin(ωτ)τ
2

3
−1dτ

=
C2

fU
2/3

3πω
ω−

2

3 Γ(2/3) sin(
π

3
)

= 0.1244C2
fU

2/3ω−
5

3 .

(2.41)

It should be pointed out that equations 2.38 and 2.41 are integrals from zero to infinity

over the two-sided spectrum Vf (κ) and Wf (ω), respectively. Because Vf(κ) and Wf (ω)

are even functions, they can be rewritten as one-sided spectrum Ff (κ) and Sf (ω) in terms

of the two-sided spectrum, respectively:

Ff(κ) = 2Vf(κ) (2.42)

and

Sf(ω) = 2Wf(ω), (2.43)

where Ff(κ) and Sf (ω) are zero for negative κ and ω, respectively. Then equations 2.38

and 2.41 can be written as

Ff(κ) = 0.2488C2
fκ

−
5

3 (2.44)
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and

Sf (ω) = 0.2488C2
fU

2/3ω−
5

3 , (2.45)

where equation [2.44] agrees with Muschinski et al. (2001) equation [9], if it is approxi-

mated as

Ff(κ) ≈ 0.249C2
fκ

−
5

3 . (2.46)

2.2.6 Locally Isotropic Velocity Fields

For locally homogeneous and isotropic turbulent velocity fields, Kolmogorov (1941a)

predicts a 4/3-ratio between the directional and the normal components in the inertial sub-

range, as described by equation [21] of Kolmogorov (1941a):

[1 − Rnn(r)]

[1 − Rdd(r)]
=

4

3
(2.47)

where

Rnn(r) =
Bnn(r)

Bnn(0)
=

Bnn(r)

σ2
nn

(2.48)

is the correlation function of the velocity component in a direction normal (transverse) to

the r-direction and

Rdd(r) =
Bdd(r)

Bdd(0)
=

Bdd(r)

σ2
dd

(2.49)

is the correlation function of the directional (or longitudinal) velocity component. Noting

that the variance of the transverse component σ2
nn and that of the longitudinal component,

σ2
dd must be equal for isotropy,

σ2
nn = σ2

dd (2.50)

and that the correlation functions Rnn and Rdd are by definition 1 at a spatial lag r = 0,

Rnn(0) = Rdd(0) = 1, (2.51)
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equation [2.47] can be rewritten as:

σ2
nn[Rnn(0) − Rnn(r)]

σ2
dd[Rdd(0) − Rdd(r)]

=
4

3
. (2.52)

With equation [2.20] we find
Dnn(r)

Ddd(r)
=

4

3
. (2.53)

Inserting equation [2.37] into equation [2.53] a 4/3 ratio is also found for the structure

parameters:
Dnn(r)

Ddd(r)
=

C2
nnr

2/3

C2
ddr

2/3
=

C2
nn

C2
dd

=
C2

w

C2
u

=
C2

v

C2
u

=
4

3
, (2.54)

where C2
nn is the structure parameter of the transversal vector component and C2

dd is the

structure parameter of the longitudinal vector component. Here, C2
u is the structure param-

eter of the velocity vector component in the x-direction, and C2
v and C2

w are the structure

parameters of the velocity components v and w, where v is the y-component of the velocity

vector, and w is the z-component. In the following we assume the z-axis to point upward.

2.3 Monin-Obukhov Theory

Subsection 2.3.1 gives a definition of the atmospheric boundary layer and the surface

layer. In subsection 2.3.2, the roughness length z0 is defined. Equations for the turbu-

lence fluxes (latent heat, sensible heat, momentum and temperature) are given in subsec-

tion 2.3.3. The turbulence scaling parameters, describing the intensity of turbulence, are

defined in section 2.3.4. Section 2.3.5 introduces the stability conditions. Section 2.3.6

states the logarithmic law of the wall. Profile correction functions, as the central result of

the Monin-Obukhov theory (generalization of the logarithmic law of the wall) are discussed

in subsection 2.3.7.
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2.3.1 Atmospheric Boundary and Surface Layer

Garratt (1992)[p.1] defines the atmospheric boundary layer (ABL) as “the layer of air

directly above the Earth’s surface in which the effects of the surface (friction, heating,

cooling) are felt directly on time scales less then a day and in which significant fluxes of

momentum, heat or matter are carried by turbulent motions on a scale of the order of the

depth of the boundary layer or less.”

The surface layer of the atmosphere, the lowest part of the ABL, is defined as the region in

which turbulent fluxes may be assumed to be constant as a function of height and the effect

of the Coriolis force due to the rotation of the earth can be neglected. The height of the

surface layer is commonly defined as 10 % of the ABL height; see figure 2.2.

2.3.2 Roughness length

Another important parameter shown in figure 2.2 is the roughness length z0. The rough-

ness length characterizes the surface structure and can have values from a fraction of a

millimeters (smooth surface) to several meters (rough surface, trees, urban area). A quan-

titative definition of z0 follows from the logarithmic law of the wall, see subsection 2.3.6.

2.3.3 Turbulence Fluxes

Since the momentum-flux, sensible heat-flux and latent heat flux are approximately

constant in the surface layer (independent of height), the surface layer is also referred to as

the constant flux layer. The momentum flux (also Reynolds stress) τr is given as

τr = ρair

√

u′w′
2
+ v′w′

2
, (2.55)
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Figure 2.2. Structure of atmospheric boundary layer; from Garratt (1992)[p.2]
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where u′w′ is the covariance of the horizontal velocity u′ with the vertical velocity w′ and

where v′w′ is the covariance of the horizontal lateral velocity v ′ with w′. ρair is the density

of air. The sensible heat flux HS is given by

HS = ρaircpw′θ′, (2.56)

where cp is the specific heat capacity of air at constant pressure and w′θ′ is the covariance

of w′ with the temperature θ′. The latent heat flux is defined as

HL = λww′q′, (2.57)

where λw is the specific heat of vaporization of water, and w′q′ the covariance of w′ with

the specific humidity q′. In addition, a temperature flux Q can be denoted as

Q =
HS

ρaircp

= w′θ′, (2.58)

which is sometimes referred to as the kinematic heat flux.

2.3.4 Turbulence Scaling Parameters

The following four scaling parameters are defined for the surface layer. These are:

velocity scale (also known as the friction velocity)

u∗ =

√

τr

ρair
= (u′w′

2
+ v′w′

2
)1/4, (2.59)

the temperature scale

θ∗ =
Q

u∗

=
w′θ′

u∗

(2.60)
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the Monin-Obukhov length

L∗ = −
u∗

3θ̄

KgQ
= −

u∗

3θ̄

Kgw′θ′
= −

θ̄

Kg

u∗

2

θ∗
(2.61)

and the height z AGL. θ̄ denotes the mean temperature in the surface layer, K the Karman

constant and g is the constant of gravity.

2.3.5 Stability Conditions

Stability conditions can be divided into the cases of unstable, neutral and stable strat-

ification. The dimensionless height z
L∗

gives a compact description of the three cases, in

which z
L∗

gives negative values for unstable stratification, values approaching zero for neu-

tral stratification and positive values for stable stratification.

2.3.6 Logarithmic Law of the Wall

Equation [13] in Monin and Obukhov (1954) states the gradient of the mean wind speed

with respect to height z (mean wind speed height profile) near the surface as:

dU(z)

dz
=

u∗

Kz
. (2.62)

Similarly the gradient of the mean temperature with respect to height z (mean temperature

height profile) can be written as:
dθ̄(z)

dz
=

θ∗
z

. (2.63)

Integration of 2.62 and 2.63 with respect to height z leads to

U(z) =
u∗

K
ln

(

z

z0

)

(2.64)
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and

θ̄(z) = θ∗ ln

(

z

z0

)

, (2.65)

which are the logarithmic law of the wall. Here equation [2.64] is identical with equation

[18] in Monin and Obukhov (1954). Equations [2.64] and [2.65] give the mean values of

wind speed and temperature at a given height z.

2.3.7 Profile Correction Functions

In Monin and Obukhov (1954) equations [29′] and [30′] state a more general form of

the equations [2.62] and [2.63] including all three possible density stratifications:

dU

dz
=

u∗

Kz
φ1

(

z

L∗

)

(2.66)

and
dθ̄(z)

dz
=

θ∗
z

φ2

(

z

L∗

)

, (2.67)

where φ1 is the correction function of the height profile of the mean wind speed and φ2 is

the correction function of the height profile of the temperature. Thus the Monin-Obukhov

theory is a generalization of the logarithmic law of the wall. Equations [2.66] and [2.67]

can be integrated with respect to z and lead to the mean wind speed and temperature at a

given height z respectively:

U(z) =
u∗

K

[

ln

(

z

z0

)

− Ψ1

(

z

L∗

)]

(2.68)

and

θ̄(z) − θ̄(z0) =
θ∗
K

[

ln

(

z

z0

)

− Ψ2

(

z

L∗

)]

, (2.69)
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where Ψ1

(

z
L∗

)

and Ψ2

(

z
L∗

)

are the correction functions for the integrated profiles, corre-

sponding to φ1 and φ2. From equation [3.34] [p. 53] in Garratt (1992) it can be seen that a

relationship between Ψ and φ can be expressed as:

Ψ

(

z

L∗

)

=

∫
[

1 − φ

(

z

L∗

)]

d

(

z

L∗

)

. (2.70)

For small values of φ
(

z
L∗

)

an analytical form can be written as:

φ

(

z

L∗

)

= 1 + β1
z

L∗

, (2.71)

where β1 is are the coefficient of a power law expansion (neglecting terms of order higher

than one) and equation [2.71] is identical to equation [42] in Monin and Obukhov (1954).

Inserting equation [2.71] into equation [2.70] gives:

Ψ

(

z

L∗

)

= −β1
z

L∗

. (2.72)

Inserting equation [2.72] into equation [2.68] and equation [2.69], results in equations for

the mean wind velocity U(z) and the mean temperature θ̄(z) as given by equations [43a]

and [43b] in Monin and Obukhov (1954) respectively:

U(z) =
u∗

K

[

ln

(

z

z0

)

+ β1
z

L∗

]

, (2.73)

known as the log-linear wind law, and

θ̄(z) − θ̄(z0) =
θ∗
K

[

ln

(

z

z0

)

+ β2
z

L∗

]

, (2.74)

where β2 is another coefficient. Figure 2.3 shows qualitatively how the different stability

conditions resulting from the density stratification impact the wind profile.
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Figure 2.3. Wind profile in stable, neutral and unstable air; from Kaimal and Finnigan
(1994) [p.12]
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CHAPTER 3

SYSTEM DESCRIPTION

This chapter explains the system used for collection and storage of wind velocity, tem-

perature and time stamps. The measurement principles of the sonic anemometer and ther-

mometer are described in section 3.1. Followed by the explanation of the data logging

system in section 3.2, which receives the data from the sonic, adds a time stamp and stores

it, section 3.3 provides an analysis of the accuracy of the time stamps. In section 3.4 the

format of the time stamps, data and the debug information is shown.

3.1 Sonic Anemometer and Thermometer Measurement Principle

The sonic anemometer relies on a simple and efficient measurement method, which

will be summarized, based on Kaimal and Finnigan (1994)[p.247]. In the given sonic

anemometer from R.M. Young Company (1999), three measurement paths of length d

crossing through the same measurement volume from different directions are defined, as

shown in figure 3.1. An ultrasonic transducer is placed at both ends of each of these paths.

This transducer can send and receive an ultrasonic sound wave of a specific frequency, as

seen in figure 3.2. The time t1 for the ultrasonic sound wave to travel from one transducer

to its counterpart can be stated as:

t1 =
d

c − Vd
, (3.1)
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Figure 3.1. Sonic anemometer measurement paths and sample volume (Picture: R.M.
Young Company (1999))

Figure 3.2. Ultrasonic transducer and measurement path from Kaimal and Finnigan (1994)
[p.247]
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where c is the speed of sound and Vd is the wind velocity along the measurement path. Sim-

ilarly the time t2 for an ultrasonic wave traveling in the opposite direction can be described

as:

t2 =
d

c + Vd

. (3.2)

Equations [3.1] and [3.2] can be rewritten as:

c − Vd =
d

t1
(3.3)

and

c + Vd =
d

t2
. (3.4)

Subtracting equation [3.3] from [3.4] gives the wind velocity along the path as Vd:

Vd =
d

2

(

1

t1
−

1

t2

)

. (3.5)

This gives the wind velocity Vd along the path d only in terms of the time t1, the time t2 and

the path length d. Note that for the sound velocity the following empirical equation exists:

c2 = 403T (1 + 0.32
e

p
), (3.6)

where T is the air temperature (in K), e the water vapor pressure and p the air pressure. In

Kaimal and Finnigan (1994) equation [3.6] is approximated as:

c2 = 403T (1 + 0.32
e

p
) ≈ 403T (1 + 0.38

e

p
) = 403Tv, (3.7)

with Tv as the virtual temperature. Taking the sum of equation [3.3] and [3.4] results into:

2c

d
=

1

t1
+

1

t2
. (3.8)
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Equation [3.8] can be rewritten as

c =
d

2

(

1

t1
+

1

t2

)

(3.9)

or

c2 =
d2

4

(

1

t1
+

1

t2

)2

. (3.10)

Equating equation [3.7] and equation [3.10] gives:

Tv =
d2

1612

(

1

t1
−

1

t2

)2

, (3.11)

which is, again, only in terms of the of the time t1, the time t2 and the path length d.

This shows that measuring the travel times t1 and t2 is sufficient to compute the wind

vector components and the virtual temperature. In the given sonic this is done by a micro-

controller integrated into the sonic, which measures the transition times, applies several

corrections (e.g. wake, cross wind, transducer shadowing) and computes the wind vec-

tor components and the virtual temperature. This data is then provided through a serial

asynchronous RS232 interface.

3.2 Data Logging System

The serial interface of the sonic described in subsection 3.1 was connected to a serial-

to-universal serial bus (USB) converter for each of the two sonics used. And these were

attached to a standard notebook computer running Linux.

In Linux any hardware or software device or data unit is represented by a file. In the case

of the serial ports provided via the USB port these files are /dev/ttyUSB0 and /dev/ttyUSB1

respectively. In this way the interaction with these devices is provided in a similar way as

interaction is provided with data units (normal files). So for data units the main actions are
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Figure 3.3. Program structure of data logging program
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to read or write data or to seek a position. For devices another action is possible, this action

is the configuration of the device (also called setup control or initialization). This action

usually specifies the way the device operates (e.g. how it handles data). However once this

phase is finished, the device can be treated very similar to a data unit.

In figure 3.3, the logical flow of the data logging and time stamping program is shown,

starting with allocating variables and other resources needed. The second step is to open

the serial port devices using a file descriptor (FD) list. A FD in this concept is essentially a

program internal universal pointer to any device file. This FD-list is essential for defining

a set of devices. Once opened, these FD’s are reset to a defined state by emptying their

buffers, in step three. As the next step the old configuration of the serial port is saved as a

precaution and for step five the new desired configuration of the serial ports is assigned to

variables. As step six the configurations of the FD’s and the serial ports are written, which

concludes the setup process.

Now, as the devices are ready to be read, the program does a dummy read on each of the

two devices, disregards this data received and clears the buffer. This action ensures that

the program is now synchronized with the sonics and does not receive incomplete data

messages. As of this point the second sonic was the last device read and the first sonic

is assumed to provide data next (to be set active in the FD list). Once the activity signal

is detected, the data is read from the device and a time stamp is generated. Both are then

stored in the data unit. The final step before getting ready to receive data again is now to

clear the device again and to activate the second sonic, which is expected to receive data

next.

Then the whole process is repeated for the second sonic by receiving data, creating the

time stamp, storing data and time stamp and switches back to the first sonic. This process,

known as ping-pong technique, continues until an interruption signal is given by sending

CTRL-C to the program. After this signal, a signal handler will be called. This is the only

way to exit the infinite loop. The signal handler then closes the data units, restores the old
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serial port configurations and terminates the program.

Note that this last step is not shown in figure 3.3, since it is not part of the main program,

but merely a way to terminate the data logger correctly at any given time.

3.3 Time Stamp Validation

Section 3.2 pointed out that not only the data but also time stamps associated with the

data are stored. It is important to determine the validity of these time stamps, and whether

they are a reliable representation of time. Ideally the time stamps should be equidistant in

time, resulting in a linear increase of recorded time as a function of the time-stamp index.

In the case of interleaved timestamps from two sensor data streams (as it is the case for the

two sonics), the offset between the time stamps with even and odd index should be constant,

which implies that the sampling rates of the two sensors are exactly identical (e.g derived

from the same reference oscillator). This furthermore assumes that the time for both sonics

from measurement of the data till time stamp generation and storage is constant.

For the further analysis a few terms have to be defined, which are raw time stamp, cor-

rected time stamp and linear time stamp. Note that the time stamp is originally created as

described in section 3.4 for every data point. For the following analysis the time stamps

are converted to seconds counted from the beginning of the experiment. This procedure

simplifies the analysis significantly.

The simplest time stamp is a raw time stamp, which is the time stamp as it is stored by

the data logging system. In figure 3.4 in the upper and center diagram the first hundred

raw time stamps for the first and the second sonic are plotted as solid lines against their

index. The spikes shown in these time stamps are caused by an operating system adjusting

mechanism, which tries to compensate for the PC-clock drift.

A corrected time stamp means that an algorithm has checked whether the time between two

consecutive samples is an integer number multiple of the sampling interval or not. In the
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Figure 3.4. Raw and corrected time stamps from sonic 1 and 2 data and time difference
over a time of 4s.
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case of a negative result, the erroneous time stamp will be corrected by replacing it with the

directly preceding time stamp plus the nearest integer number multiple of the sampling in-

terval. Note that this algorithm allows for a small correct range around the integer number

multiple of the sampling interval for the time between samples, rather than one value. This

is needed because there is always small jitter in the time stamping interval. Therefore this

method does not correct for any drift and might contain jumps in time because it checks

for the integer multiple of the sampling interval, rather than for the sampling interval. In

figure 3.4 the dashed line shows the corrected time stamps corresponding to the raw time

stamps plotted against their index. It can be seen that spikes from the raw time stamps were

successfully removed.

Linear time stamping means that the time stamps are recomputed by taking the last and

the first time stamp from the whole data set, and that a linear estimation between them is

computed. Then all values between the first and the last time stamp are replaced. Note

that use of this technique can introduce additional errors compared to the true time if the

original time series contains a drift. Otherwise the resulting time stamps will be perfect, as

missing samples are assumed not to exist.

The bottom diagram of figure 3.4 shows the differences between the two sonics for the

raw and for the corrected time stamps. It can be seen that the difference of the corrected

time stamp is close to zero and that the difference between raw time stamps is a small value

compared to the sampling interval. For the latter one, however, this small offset is increased

when the clock adjustment spike is observed. This seems to be the case because the clock is

adjusted much faster then normally. However, even this increased offset is small compared

to the time between time stamps, so that no large relative error is generated between time

stamps of both sonics.

Since figure 3.4 only shows a very small time period, not all possible errors might have

occurred. Figure 3.5 shows the relative error between the sonics for all three available time

stamps over the total experiment time. It can be seen that there are many spikes in the
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raw time stamps, significantly reduced number of spikes in the corrected time stamps and

none in the linear time stamps. Assuming that few spikes in the corrected time stamps are

caused by missing samples, it can be justified to assume that most of the data shown has no

missing samples. Based under this assumption the problem of ignoring missing samples,

when using the linear time stamps, should be negligible.

Here two more possible errors are explained. Note that all effects are superimposed on
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Figure 3.6. Drift of PC clock over 66 h.

each other. One of the additional errors, which can appear if two sonics are not referenced

to the same oscillator (the sampling frequencies might not be exactly the same), is that a

phase error can accumulate. This can switch the order of sampling of the sonics with re-

spect to each other. Thus the data logging program described in section 3.2 will lose one

data point, since it expects a value from the other sonic to be sent. However this error can
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be tracked by finding the difference between two consecutive samples, and detect, when

the difference is twice the sampling interval. Note that this error still assumes a perfect

PC-clock oscillator.

The PC-clock oscillator drifts in general due to temperature changes. In figure 3.6 such a

drift is shown for the whole experiment time period. Figure 3.6 shows the difference be-

tween the corrected time stamps and the linear time stamps. Interestingly, a kind of diurnal

cycle can be seen in the drift, which confirms the dependency of the time stamp drift with

temperature. The spikes are likely resulting from missing samples, as explained before.

Note that the drift of the PC-clock over the experiment time is on the order of a second.

When using the two sonics alone with the same computer as a data logger, it can also be

seen that the relative time between the two sonics is stable. But the drift might become a

problem in reference to external systems.

3.4 File Format

The data and the time stamps are stored to a data unit on a mass storage device.

The data unit is a plain text file (also known as ASCII file). The two files containing

the two data stream from sonic 1 and 2 are named SONIC 1 20051017205809.DAT and

SONIC 2 20051017205809.DAT, respectively. The time stamp included in the filename is

the start time, day, month and year of the data record.

The files contain, for each text line in this order, a time stamp, as shown in table 3.1, the

data as shown in table 3.2 and debugging information, as shown in table 3.3. Note that for

the main data set used in the data analysis (20051017T175952 eastern daylight time (EDT)

to 20051020T115952 EDT) only the bold type values were recorded, to reduce the file size.
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Year Month Day Hour Minute Seconds
2005 07 20 14 31 15.355233

Table 3.1. Time stamp format

u v w Azimuth Elevation 3d-Speed Speed of Sound Temperature
[m

s
] [m

s
] [m

s
] [◦] [◦] [m

s
] [m

s
] [◦C]

-0.86 0.16 -0.20 281.0 -12.9 0.91 349.84 30.57

Table 3.2. Data format

Error Flag Internal Voltage
0 26.5

Table 3.3. Debug information
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CHAPTER 4

EXPERIMENT SETUP AND DATA ANALYSIS

4.1 Experiment Location and Setup

To test the turbulence measurement system described in the preceding chapter, an ex-

periment was performed at the Tilson farm facility of the Microwave Remote Sensing Lab

in Amherst, MA. Timestamps, temperatures and the three wind vector components were

recorded for both of the sonics from the 17th of October 2005 at 17:29:52 eastern daylight

time (EDT) until the 20th of October 2005 at 13:14:42 EDT.

Figures 4.1 and 4.2 show the setup of the sonics on top of standard light stand tripods. The

sonics were stabilized using nylon strings attached to the sonic frame and to tent pegs in

the ground. The measurement height was z1 = 3.8 m for one sonic and z2 = 3.0 m for the

other. The centers of the tripod bases were separated by d = 1.8 m. It should be noted that

this was only a tentative setup, since the two professional 20-foot meteorological tripods

ordered were not available in time. In the future, the professional system will be used

because it is more robust, allows larger measurement heights and can facilitate multiple

sensors on a single tower.

4.2 Weather Conditions

Another factor influencing the data is the weather. Analysis of the cloud coverage

information from www.weather.com for the given time period from the 17th of October
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Figure 4.1. Experiment setup at Tilson farm facility (Picture: Yonghun Cheon)

Figure 4.2. Close up of sonics (Picture: Yonghun Cheon)
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2005 at 17:29:52 EDT till the 20th of October 2005 at 13:14:42 EDT, shows that it was

between cloudy, mostly cloudy and sometimes partly cloudy. There was no precipitation.

4.3 Coordinate Systems

The sonic can be set to provide the wind vector components u (horizontal), v (lateral)

and w (upward) in a rectangular coordinate system referenced to its frame, as shown in

figure 4.3. However the most useful coordinate system for the application of turbulence

theory is a stream-wise one, since it allows for simplification of the theory. In the rectan-

gular stream-wise coordinate system the unit vector of the wind component u is the unit

vector of the mean wind vector. The data is converted from the sonic coordinate system to

the stream-wise coordinate system by rotation, which is described in subsection 4.4.3.

Figure 4.3. Sonic coordinate system (Picture: R.M. Young Company (1999))
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4.4 Data Preparation

4.4.1 Raw Data

Raw atmospheric data can be written in the form of a mean quantity f̄ plus a fluctuating

part f ′, also known as Reynolds notation:

f = f̄ + f ′. (4.1)

For a wind vector decomposed into the rectangular sonic coordinate system the resulting

equations are shown in table 4.1.

Wind vector component Total Component Mean
horizontal u = ū + u′ ū = 1

N

∑N
i=1 ui

horizontal lateral v = v̄ + v′ v̄ = 1
N

∑N
i=1 vi

vertical upward w = w̄ + w′ w̄ = 1
N

∑N
i=1 wi

Table 4.1. Wind vector components in Reynolds notation

4.4.2 Averaging Interval

To resolve mean quantities of velocity and temperature, an averaging interval has to be

chosen. It has to take two important parameter into account. First of which is the variance

of the wind fluctuation around the mean. The second one is the time scale of the diurnal

cycle, which is 24 hours, but can have significant changes on the order of hours. As a part

of the Reynolds notation in table 4.1, the mean value of a stationary random time function

f(t) was estimated as time average f̄(t) instead of ensemble average 〈f(t)〉. However if a

time average is taken over a long enough time, it converges to the ensemble average 〈f(t)〉:

f̄(t) = 〈f(t)〉 = lim
N→∞

1

NTs

N
∑

i=1

f(iTs), (4.2)
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where Ts is the sampling interval, i is the sample number and N the total numbers of

samples taken into account. Using an infinite sum of a time series however is impractical

and the law of large numbers allows for truncating of this sum if the number of averaged

independent samples Nind = T
τi

is large. Here τi is the integral time scale defined in

equation [2.31] and T = NTs is the total time taken into account for the calculation or

simple averaging time. A sample is called independent in this context if it is spaced further

then the integral time scale τi away from the preceding sample. In other words, a sample

is dependent on a preceding sample, if the spacing between them is less then the integral

time scale τi.

In order to obtain a large number of independent samples, the averaging time T therefore

must be much larger then the integral time scale τi:

T >> τi. (4.3)

The law of large numbers can be written as:

σ2
f̄ =

τi

T
σ2

f , (4.4)

where σ2
f̄

is the variance of the time average (with the averaging time T ). To get a real-

istic understanding of the range of expected reduction of the variance of the estimation of

the mean value of the velocity or temperature, real data has to be inserted into equation

[4.4]. From velocity measurements shown later in section 4.5 the variance for one given

time series was estimated as σ2
u = 1.20(m

s
)2 and the integral time scale was estimated as

τi ≈ 5s. Note that the averaging time is a value which has to be a trade-off between two

demands. First there is the demand for a larger averaging time to reduce the variance of

the estimation of mean values. On the other hand, we assume stationarity, which does not

hold for longer averaging times, which are a significant fraction of the diurnal cycle. In

Kaimal and Finnigan (1994) [p.256] a maximum averaging time is suggested as about as
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T ≈ 3600s, used in the following estimations. Inserting these values gives the standard

deviation σū of the stationary random time function of the velocity component u as:

σū =

√

τi

T
σ2

u =

√

5s

3600s
1.20(

m

s
)2 = 0.041

m

s
(4.5)

Another way to express this relationship is by the number of independent samples, which

can be calculated for the given example as:

Nind =
T

τi
=

3600s

5s
= 720. (4.6)

Table 4.2 gives results for the number of independent samples and accuracies for different

averaging periods and a fixed integral time scale. As seen here, the user of the data has to

decided, what is an acceptable σū, which then sets the required averaging time.

Averaging Time [s] # of Independent Samples σū in % of σu

60 12 28.9
600 120 20.4

3600 720 3.7

Table 4.2. Number of independent samples and accuracy for integral time scale τi = 5s

4.4.3 Data Rotation

In section 4.3 the sonic- and stream-wise coordinate systems were introduced. One

commonly used method to convert data from the sonic- to the stream-wise coordinate sys-

tem is the three-angle-rotation, which is described in Wilczak et al. (2001) and summarized

here. Figure 4.4 shows a visualization of the rotations involved. The first step is to deter-
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Figure 4.4. Three angle rotation method; diagram from Wilczak et al. (2001)
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mine the angle α from the mean wind component ū in the x-direction and the mean wind

component w̄ in the z-direction:

α = arctan
( w̄

ū

)

. (4.7)

The angle α can be used to to compute the rotation matrix B:

B =













cos(α) 0 sin(α)

0 1 0

− sin(α) 0 cos(α)













, (4.8)

which converts the raw wind vector component u into the intermediate wind vector com-

ponent uI in the intermediate XI-direction and the raw wind vector component w into the

intermediate wind vector component wI in the intermediate ZI-direction:













uI

v

wI













= B













u

v

w













(4.9)

Note that the raw wind vector component v was not effected by this step. This operation

has now corrected the pitch, the next step is to compute the angle β to correct the roll angle:

β = arctan

(

−w̄I

v̄

)

, (4.10)

where w̄I is the mean of the intermediate wind vector component wI . Following the rotation

matrix C can be computed:

C =













1 0 0

0 cos(β) − sin(β)

0 sin(α) cos(β)













. (4.11)
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and applied similar to the rotation matrix B:













uI

vI

w′













= C













uI

v

wI













, (4.12)

which left uI unchanged and converted the raw wind vector component v into the inter-

mediate wind vector component vI in the YI-direction and the intermediate wind vector

component wI into the final wind vector component w′ in the Z ′-direction in the stream-

wise coordinate system. Finally the yaw angle γ can be computed from the mean of the

intermediate wind vector component vI and from the mean of the intermediate wind vector

component uI by using

γ = arctan

(

ūI

v̄I

)

. (4.13)

The third rotation matrix can then be found by using

D =













cos(γ) − sin(γ) 0

sin(γ) cos(γ) 0

0 0 1













. (4.14)

Applying matrix D then gives the two missing final wind vector components u′ in the X ′-

direction and v′ in the Y ′-direction respectively:













u′

v′

w′













= D













uI

vI

w′













. (4.15)

Note that in this subsection the primed notation was only used to be consistent with the

figure and Wilczak et al. (2001). To avoid confusion with the fluctuating parts, the wind

vector components are redefined as:
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urot

vrot

wrot













=













u′

v′

w′













. (4.16)

4.4.4 Data Detrending

However the rotation procedure is not sufficient to prepare the data for an analysis

using the auto covariance function since it does not remove the mean value from the urot-

component. It also ignores any possible trend in all three wind vector quantities urot, vrot

and wrot. Therefore a detrending procedure has to be applied. This is done by fitting a

linear function through the data:

yfit = ax + b, (4.17)

where a is the slope of the function fitted through the data and b is the y-intercept. Here, x

is a variable, such as time, and yfit is a variable defending on x, which can be any of the

velocity components or the temperature. The constants a and b can be determined as

a =
N

∑N
i=1 xiyi −

(

∑N
i=1 xi

) (

∑N
i=1 yi

)

N
∑N

i=1 x2
i −

(

∑N
i=1 xi

)2 (4.18)

and

b =

(

∑N
i=1 x2

i

) (

∑N
i=1 yi

)

−
(

∑N
i=1 xi

) (

∑N
i=1 xiyi

)

N
∑N

i=1 x2
i −

(

∑N
i=1 xi

)2 , (4.19)

where N is the number of points of the original data, i is the index of a point in the original

data, xi is the x-value of a point with the index i in the original data and yi is the y-value

of a point with the index i in the original data. The original data can be described as

yi = f(xi), (4.20)
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with

i = 1, 2, 3, ...N, (4.21)

where f() means function of. The function yfit has now to be subtracted from the original

function yielding a detrended function:

ydeti = f(xi) − [axi + b]. (4.22)

4.4.5 Example for Raw, Rotated and Detrended Time Series

To illustrate the effects of rotation and detrending on the wind vector components u, v

and w, a 35 min time series is shown as an example in figure 4.5. In figure 4.5 the diagrams

in the left column show the raw time series. The center column displays the rotated time

series and the right column contain first rotated and then detrended time series. The time

series from the top to bottom are u, v and w, respectively. Looking at the diagrams on the

left hand side, it can be seen that u and v are varying more strongly than w. The center

diagrams show that the rotation concept can also be seen as transferring the mean parts

of v and w to the u component. The over-plotted lines in these diagrams are the linear

regression lines used to detrend data. It can be seen that there is a slight upward trend,

even if the mean is zero as shown for v and w. In the three diagrams on the right only

the fluctuating parts are left, since the rotation and then detrending was applied, so that the

linear trend is eliminated and the mean value is zero.

4.5 Data Analysis

This section will analyze and describe the data from several perspectives. First, the

noise level and the measurement errors are estimated, in subsections 4.5.1 and 4.5.2 re-

spectively, to provide an understanding of the precision of the data. The second step is the
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Figure 4.5. Wind vector components for a 35 min time series block (left column - raw),
(center column - rotated), (right column - detrended)
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time-domain analysis using the autocovariance function and the structure function in sub-

section 4.5.3. Subsection 4.5.4 presents a spectral viewpoint by means of the periodogram

and the power spectrum. Based on the time and spectral domain analysis, subsection 4.5.5

shows the inertial subrange and presents the velocity and temperature structure parameter.

In subsection 4.5.6 the integral length and time scales are resolved and discussed. The final

subsection 4.5.7 shows the approach of isotropic behavior based on structure function and

power spectrum.

4.5.1 Noise Estimation

A measured time series m(t) can be described as a superposition of a true time series

f(t) and a noise component n(t):

m(t) = f(t) + n(t). (4.23)

Assuming that the noise n(t) is zero-mean and uncorrelated, its ACF becomes:

Bn(τ) =











σ2
n : τ = 0

0 : τ 6= 0
(4.24)

Here σ2
n is the noise variance. Now considering the ACF of m(t):

Bm(τ) = 〈[f(t)+n(t)][f(t+τ)+n(t+τ)]〉 = 〈f(t)+f(t+τ)〉+〈n(t)+n(t+τ)〉, (4.25)

where statistical independence is assumed, such that:

〈f(t1)n(t2)〉 = 0 (4.26)
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for any t1 and t2. Therefore

Bm(τ) = Bf (τ) + Bn(τ). (4.27)

Now, considering the difference between Bm(0) and Bm(τ):

Bm(0) − Bm(τ) = Bf(0) + σ2
n − [Bf (τ) + 0] = Bf (0) − Bf (τ) + σ2

n, (4.28)

or

∆Bm(τ) = ∆Bf (τ) + σ2
n, (4.29)

where

∆Bm(τ) ≡ Bm(0) − Bm(τ), (4.30)

and

∆Bf(τ) ≡ Bf(0) − Bf (τ). (4.31)

If τ << τi, then ∆Bf (τ) may or may not be negligible compared to σ2
n. If ∆Bf (τ)

negligible, then equation [4.29] reduces to

σ2
n ≈ ∆Bm(τ). (4.32)

In many cases ∆Bf(τ), however, may not be neglected. Using equation [2.18] ∆Bf (τ)

can then be written in terms of the structure function:

∆Bf(τ) =
1

2
Df(τ). (4.33)

If τ is in the inertial subrange, equation [2.40] can be inserted into equation [4.33], which

gives the following result:

∆Bf (τ) =
1

2
C2

fU2/3τ 2/3. (4.34)
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Inserting equation [4.34] into equation [4.29] gives:

σ2
n = ∆Bm(τ) −

1

2
C2

fU
2/3τ 2/3, (4.35)

valid only for the inertial subrange. For sonic anemometer, an effect known as spatial

averaging smooths out all variations, which are smaller then the measurement path d. Cor-

respondingly, a range of time lags can be determined using Taylors hypothesis in which the

ACF will be low-pass filtered:

τspat ≤
d

Ū
=

0.15m

1.84m
s

= 0.082s, (4.36)

where d = 0.15 m was found from R.M. Young Company (1999) and Ū = 1.84m
s

was com-

puted from the time series of the velocity component u from data set 2005-10-18 16:29:52

EDT to 2005-10-18 17:29:52 EDT. Figure 4.6 shows the ACF’s of the velocity components

u,v,w and the temperature θ in the vicinity of the zero lag for the corresponding time. Only

the ACF of the temperature shows a spike at the zeroth lag. Looking to the correspond-

ing detrended temperature time series in figure 4.7 shows that the temperature fluctuation

during this measurement period were in the same range as the precision of ±0.1 K for the

temperature measurements.

For the velocity data, however, during the whole experiment the fluctuation were many

times larger then the precision of about ±0.05m
s

given by R.M. Young Company (1999)

for velocity, so that a noise spike could not be found. Figure 4.8 shows these velocity

fluctuation correspondingly to the temperature fluctuation of figure 4.7. The noise in the

temperature data can be estimated by using equation [4.32] as

50



−0.4 −0.2 0 0.2 0.4
1

1.2

1.4

1.6

1.8

Time lag/Seconds

B
u
(τ

)[
(m
/s

)2
]

2005−10−18 16:29:52 − 2005−10−18 17:29:52 

−0.4 −0.2 0 0.2 0.4
1.1

1.2

1.3

1.4

1.5

Time lag/Seconds
B
v
(τ

)[
(m
/s

)2
]

−0.4 −0.2 0 0.2 0.4
0.2

0.25

0.3

0.35

0.4

Time lag/Seconds

B
w

(τ
)[

(m
/s

)2
]

−0.4 −0.2 0 0.2 0.4
3.5

4

4.5

5

5.5

6
x 10−3

Time lag/Seconds

B
θ
(τ

)[
(K

)2
]

AGL=3m
AGL=3.8m
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σ2
nθ ≈ ∆Bmθ(τs)

= Bmθ(0) − Bmθ(τs)

= 0.0057K2 − 0.0050K2

= 0.0007K2

(4.37)

or

σnθ = 0.026K, (4.38)

where σ2
nθ is the variance of the noise added to the temperature time series, σnθ the cor-

responding standard deviation, Bmθ the measured ACF of the temperature plus noise and

τs = 0.0314s the sampling interval, or first time lag. Trying to use equation [4.35] instead,

with U = 1.84m
s

, C2
θ = 0.02 K2

m
2
3

, τs = 0.0314s and ∆Bmθ(τs) = 0.0007K2, results in:

σ2
nθ = ∆Bmθ(τs) −

1

2
C2

θU
2/3τ 2/3

s

= 0.0007K2 −
1

2
0.02

K

m
2

3

(1.84
m

s
0.0314s)

2

3

= 0.0007K2 − 0.00150K2 = −0.0008K2,

(4.39)

which cannot be true since there is no negative noise, and it is likely due to the explained

spatial averaging effect.

4.5.2 Measurement Errors

To describe measurement performance the specification of sensors usually contains the

terms accuracy, precision, sensitivity and/or resolution, which are reviewed in the follow-

ing. The precision P (or sensitivity) is defined as the standard error of the fluctuation:

P =
√

〈(m′ − t′)2〉, (4.40)
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where m′ are the measured fluctuations and t′ are the true fluctuations. Now consider the

standard error A (referred to as accuracy) of a non-zero-mean variable:

A =
√

〈(m − t)2〉

=
√

〈[(〈m〉 + m′) − (〈t〉 + t′)]2〉

. (4.41)

The accuracies for the wind speed U and the temperature θ are given in table 4.3 and

4.4. In subsection 4.5.1 the noise in the temperature data was estimated as σnθ = 0.026K.

Assuming a normal distribution, 99.7% of all values are within ±3σnθ = ±0.078K of the

mean value. This can be regarded as the precision of the temperature measurment, which is

much better then the accuracy shown in table 4.4. It can be concluded that the mean value

of the temperature is estimated much worse then the fluctuations of the temperature. To

confirm the accuracy for temperature or velocity an external calibration standard would be

needed.

For the wind speed U table 4.3 gives an equation to calculate the accuracy of the standard

deviation σu. Choosing σu = 1.1m
s

from the the dataset 2005-10-19 23:29:52 EDT to

2005-10-20 00:29:52 EDT gives:

A = ±
1

100
σu + ±0.05

m

s

= ±
1

100
1.1

m

s
+ ±0.05

m

s

= ±0.06
m

s

. (4.42)

While it was not possible to estimate the noise in the wind speed data in subsection 4.5.1,

an order of magnitude estimate is possible from the power spectrum, as performed later in

subsection 4.5.4. The standard deviation of the noise derived from the power spectrum is
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0.083m
s

, which results in a precision of ±0.24m
s

. This of course is larger than 0.06m
s

. As

pointed out in subsection 4.5.4 as well, this value is overestimated and nevertheless agrees

by a factor of about four to five with the range of the accuracy. A typical sensor contains an

Range 0 to 40 m/s
Resolution 0.01 m/s
Threshold 0.01 m/s
Accuracy ±1 % rms ± 0.05 m/s (0 to 30 m/s)

±3 % rms (30 - 40 m/s)

Table 4.3. Performance on wind speed from R.M. Young Company (1999)

Range −50◦C to 50◦C
Resolution 0.01◦C
Accuracy ±2◦C (0 to 30 m/s)

Table 4.4. Performance on temperature from R.M. Young Company (1999)

analog to digital converter (ADC) with a certain number of bits NADC . Then the resolution

R or the quantization step Q (assuming linear quantization) is defined as:

R = Q =
range

2N
(4.43)

where range is the allowed input range of the sampled analog signal, which can be uni-

or bipolar. Thus the value of the resolution is not useful for any performance description.

However, it should be better than the precision and the accuracy, otherwise it will limit the

performance. It can be seen from table 4.3 and 4.4 that these requirements are fulfilled for

the used sonic.

56



4.5.3 Autocovariance Function and Structure Function

In figure 4.9 the ACF of the velocity component u is shown for the measurement heights

of 3.0 m and 3.8 m. The maximum lag used is τ = 600s. It can be seen that there are two

distinct time lag ranges. The first is around the zero lag up to about |τ | ≈ 50− 60s, and the

other one is the range beyond this.

Following Orlanski (1975), the time and length scales of atmospheric processes can be

divided in categories of micro-, meso- and macro-scales. These categories can further be

subdivided into subcategories named gamma, beta and alpha. From figure 4.10, it can be

seen that the range in the vicinity of the zero lag is denoted the micro-gamma region with

time-scales until 1 min and length-scales until 20 m. An extract of atmospheric processes

classified by Orlanski (1975) for the micro range is shown in table 4.5.

To extract the turbulent structure parameter C2
f , the structure function Df(τ) is computed

assuming stationarity from the ACF Bf(τ) using equation [2.18]. Figure 4.11 shows Du(τ)

computed from Bu(τ) shown in figure 4.9. Ideally the structure function approaches, for

large time lags τ , a constant value of 2Bf(τ) = 2σ2
f . In 4.11, the asymptotic behavior is

approximately reached at about τ = 1min.

Range Time Scale τ Length Scale R Processes
Micro-Gamma τ ≤ 1 min R ≤ 20m Plumes

Roughness
Turbulence

Micro-Beta 1min ≤ τ ≤ 5 min 20m≤ R ≤ 200m Dust Devils
Thermals

Wakes
Micro-Alpha 5min ≤ τ ≤ 30 min 200m ≤ R ≤ 2000m Tornadoes

Deep Convection
Short Gravity Waves

Table 4.5. Atmospheric processes in the micro scale after Orlanski (1975)
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Figure 4.10. Scales of atmospheric processes; after Orlanski (1975); diagram from Foken
(2003)[p.5]
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Figure 4.11. Structure function of u with a maximum time lag τ = 600s for sonic 1 and 2
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4.5.4 Periodogram and Power spectrum

While subsection 4.5.3 described turbulence from a time-domain perspective, a spectral

description in the form of the power spectrum or the wavenumber spectrum is often more

useful. Several ways are available to estimate the one-sided power spectrum Sf(ω), one of

which is to use the Wiener-Khintchine relationship [2.21] and equation [2.43] based on the

Fourier transformation of the ACF:

Sf(ω) = 2Wf(ω) = 2
1

2π

∫

∞

−∞

e−jωτBf(τ) dτ. (4.44)

Another method is the direct Fourier transformation (FT) of the time series to obtain

the spectrum Lf (ω) as the properly normalized magnitude square of the FT:

Sf(ω) = 2Wf(ω) = 2Lf (ω)Lf(ω)∗ = 2|Lf(ω)|2. (4.45)

Note that the spectrum computed by this method cannot have any imaginary part, because

of the absolute operation involved.

The one-sided power spectrum Sf(ω) is also known as the variance spectrum, because of

the following property:

σ2
f =

∫

∞

0

Sf(ω)dω, (4.46)

which is the requirement for a computed one-sided power spectrum to be correctly nor-

malized. Table 4.6 shows such a computation done for the power spectra of u,v,w and

θ computed from the dataset using both described spectral methods and directly from the

time series. The values shown agree well with each other, as expected. The power spec-

trum Sf (ω) of a random time function should strictly be distinguished from the raw power

spectrum or the periodogram, denoted Ŝf(ω). The latter one is a random function of ω,

while the power spectrum is a deterministic function of ω.

However the periodogram can be smoothed to give an estimate of the power spectrum. The
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Variable Time series FFT direct FFT ACF
σ2

u [(m
s
)2] 1.1971 1.1971 1.1970

σ2
v [(m

s
)2] 0.7611 0.7611 0.7610

σ2
w [(m

s
)2] 0.3169 0.3169 0.3168

σ2
θ [K2] 0.0407 0.0407 0.0407

Table 4.6. Variance computed from time series, direct FFT and ACF FFT

spectral smoothing technique applied is logarithmic-equidistant-averaging, which averages

all data values in a logarithmic constant intervals of a given width, as used in Siebert and

Muschinski (2001). Figure 4.12 shows an example of the real and imaginary parts of the

periodogram and the power spectrum of u computed using the ACF. Note that the imagi-

nary part is nearly flat over the spectrum and about 10 orders of magnitudes smaller then

the real part, which designates it as numerical noise due to unavoidable rounding errors.

There should indeed be no imaginary part due to the computation, since the ACF is an even

and real function, and the Fourier transformation of an even and real function is purely real.

Thus the results of the real operation and the absolute operation become identical. The pe-

riodogram and the power spectrum are shown in figure 4.13 for the method using the ACF

to compute the FFT and in figure 4.14 for the method using the time series directly. Now

comparing figure 4.13 and figure 4.14 the power spectrum with the f−
5

3 law shows a good

agreement for nearly two decades from about 0.2 Hz to 10 Hz. However at frequencies

between 10 Hz and the Nyquist frequency of 16 Hz a slight flattening of the spectrum can

be seen. Reasons for this can be that the noise level of the sonic is reached or that energy

is aliasing back from above the Nyquist frequency.

It is possible to conservatively estimate the variance of the noise as following:

σ2
n =

∫ ωnyq

0

Sn(ω)dω = Sn

∫ ωnyq

0

dω, (4.47)

where ωnyq is the angular Nyquist frequency. Assuming a flat noise floor and that the

smoothed measured power spectrum is severely limited by noise at the Nyquist frequency
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equation [4.47] can be written as:

σ2
n = Sf(ωnyq)ωnyq. (4.48)

Table 4.7 lists the variance of the noise for all velocity components and for temperature

Variable FFT direct FFT ACF ACF
σ2

nu [(m
s
)2] 0.0069 0.0069 N/A

σ2
nv [(m

s
)2] 0.0088 0.0088 N/A

σ2
nw [(m

s
)2] 0.0102 0.0103 N/A

σ2
nθ [K2] 0.00069 0.00069 0.0007

Table 4.7. Variance of noise computed from power spectrum and ACF

Variable FFT direct FFT ACF ACF Siebert and Muschinski (2001)
σnu [m

s
] 0.083 0.083 N/A 0.02

σnv [m
s
] 0.093 0.093 N/A 0.02

σnw [m
s
] 0.101 0.101 N/A 0.02

σnθ [K] 0.026 0.026 0.026 0.02

Table 4.8. Standard deviation of noise computed from power spectrum and ACF

using the spectral techniques. Table 4.8 shows the corresponding standard deviations and,

in addition, values measured by Siebert and Muschinski (2001) with a similar sonic. It

can be seen that the variance of the noise in the temperature data agrees well with all tree

methods, and is close to the value from Siebert and Muschinski (2001). The variance of

the noise in the velocity components might have been overestimated because the flattening

in the power spectra is not very strong and there is no visual noise spike in the ACF of the

velocity components. Comparing the velocity components to the smaller values retrieved

by Siebert and Muschinski (2001) supports this interpretation.

In figure 4.15 the power spectra of the velocity components are computed with the two

described spectral methods and plotted. It can be seen that both spectral analysis methods
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lead to very similar results. Further, it can be noted that all obey the 5/3 law over a range

of nearly two decades. However Sw(f) has a significant lower power density at lower

frequencies, which can be explained by the presence of the ground. The ground prevents

large-scale or long-term vertical motion at low heights (assuming the ground is horizontal

and flat). Similarly in figure 4.16 the temperature power spectrum is plotted for both spec-
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Figure 4.15. Power spectrum of velocity component time series computed directly and
from ACF

tral methods, which again show agreement and follow the 5/3 law. The effect of the noise

floor, however, is much more visible, compared to the velocity power spectra. This is indi-

cated by a stronger flattening of the power spectrum near the nyquist frequency, caused by
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the lower signal-to-noise ratio (SNR) of the temperature measurements compared to that

of the velocity.
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Figure 4.16. Power spectrum of temperature time series computed directly and from ACF

4.5.5 Inertial Subrange and Structure Parameter

In subsection 4.5.3 the structure function Df (τ) was computed and an example for

Du(τ) was given in figure 4.11. The turbulent structure parameter C2
f can be computed

from Df=u(τ) based on equation [2.40]:

C2
f (τ) =

Df (τ)

U2/3τ 2/3
. (4.49)
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In figure 4.17 the velocity structure parameters C2
u(τ),C2

v (τ) and C2
w(τ) are shown while in

figure 4.18 the temperature structure parameter C2
θ (τ) is plotted. It needs to be kept in mind

that equation [4.49] is valid only for the inertial subrange. This range can be recognized

as a plateau. In addition, the 2Bf (0) asymptote is plotted. The intersection of the 2/3 law

and the 2Bf (0) asymptote can be defined as the intersection time lag τ0 (here τu,τv,τw and

τθ respectively). Values of the structure parameters can also be derived from the power
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Figure 4.17. Structure parameter of velocity components from structure functions
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spectra by rewriting equation [2.45] as:

C2
f (f) = 4.02Sf(f)

[

2π

Ū

]
2

3

f
5

3 . (4.50)

Figure 4.19 shows the results from equation [4.50] for the velocity structure parameter and

figure 4.20 shows the structure parameter of the temperature derived from the power spec-

trum.

Table 4.9 lists the structure parameter derived with the spectral methods and the structure

function. It can be seen that in all cases C2
v is the largest, followed by C2

u and then C2
w.

While both spectral methods agree closely between themselves, the values extracted from

the structure function deviate from them. In the case of deriving the structure parameter

from the structure function only a peak instead of a well defined plateau is indicating the

2/3 law, and therefore the inertial subrange. Therefore structure parameter can only be

chosen as the maximum. However, this is not the case when it is derived from the spectral

methods, in which case the inertial subrange is wider and can be recognized as a plateau in

figure 4.19 and 4.20 at higher frequencies.

Comparing these two ways (spectral methods and structure function), the way using the

spectral methods provides a much wider inertial subrange, which allows for a better es-

timate of the structure parameter, rather than just using the peak value from the structure

function estimate.

Variable FFT direct FFT ACF Structure Function
C2

u [( (m/s)2

m2/3
] 0.4529 0.4532 0.3415

C2
v [( (m/s)2

m2/3
] 0.5506 0.5512 0.3823

C2
w [( (m/s)2

m2/3
] 0.3868 0.3869 0.3145

C2
θ [ K2

m2/3
] 0.0173 0.0173 0.0154

Table 4.9. C2
α computed from power spectra and structure function
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Figure 4.19. Structure parameter of velocity components from power spectrum

4.5.6 Integral Time and Length Scales

The intersection time lag τ0 given in subsection 4.5.5 can be determined from the ACF

by assuming a 2/3 dependence in following form:

Bf(τ) = Bf(0) −
1

2
Df = σ2

f −
1

2
C2

f Ū2/3|τ |2/3, (4.51)

where equation [2.40] was inserted into equation [2.18] to resolve equation [4.51]. To find

the intersection point of the 2Bf(0)-asymptote and the 2/3 law, equation [4.51] can be
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rewritten as:

2σ2
f = C2

f Ū
2

3 τ
2

3

0 , (4.52)

where the time lag τ was set to the intersecting time lag τ0. The intersection time lag τ0

can now be written as:

τ0 = 2
3

2

σ3
f

[C2
f ]

3

2 Ū
. (4.53)

Using equation [2.31], insert [4.51] and assuming Bf(τ) = 0 for τ ≥ τi, τi can be written

as:
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τi =
1

Bf(0)

∫ τi

0

Bf (τ) dτ

=
2

Bf(0)

∫ τi

0

σ2
f − 0.5C2

f Ū
2/3|τ |2/3 dτ

= 2τ0 −
C2

f Ū
2/3

σ2
f

3

5
τ

5

3

0

= 2

[

2
3

2

σ3
f

[C2
f ]

3

2 Ū

]

−
C2

f Ū
2/3

σ2
f

3

5

[

2
3

2

σ3
f

[C2
f ]

3

2 Ū

]
5

3

=

[

2
5

2 −
3

5
2

5

2

]

σ3
f

[C2
f ]

3

2 Ū

=
4

5
τ0.

(4.54)

Figures 4.21, 4.22, 4.23 and 4.24 show the application of this technique, from here it can be

seen that the analytical result for the relationship τi = 4
5
τ0 from equation [4.54] is confirmed

by the numerical integration over Bfit(τ). Using Taylor’s hypothesis the integral time scale

τi can be converted into the integral length scale ri:

ri = Ūτi (4.55)

and correspondingly for the integral scales of the angular frequency ωi (spectral width) and

the wavenumber κi:

ωi = Ūκi. (4.56)

Table 4.10 shows the results of the integral scales calculated using equations [4.55], [4.56],

[2.33] and [2.36]. Two effects on the length scales can be seen in table 4.10. First the length

scale riw = 1.93 m of w is much smaller than the length scale riu = 12.10 m of u and the

length scale riu = 6.00 m of v. Secondly the length scale of w is about 1/3 less than the

height z = 3m, while the length scales of u and v are twice and four times the height z

respectively. Looking at ACF’s shown in figure 4.23 for w, in figure 4.21 for u and 4.22

for v, a faster decline of the ACF for w can be seen then for u and v. Another observation
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Var. Time Scale Length Scale Spectral Width Spectral Width Spectral Width
τi ri ωi fi κi

[s] [m] [1
s
] [Hz] [ 1

m
]

u 4.99 12.10 1.26 0.20 0.52
v 2.48 6.00 2.53 0.40 1.05
w 0.80 1.93 7.76 1.23 3.26
θ 3.81 9.24 1.64 0.26 0.68

Table 4.10. Integral scales

is that u has the largest length scale. This is consistent with the idea that the ground limits

the length scale of w as mentioned before.

Another way to analyze the length scale and the time scale is to compute their values for

1-hour blocks over the whole experiment time and to compare their behavior to the mean

wind speed computed over the same time interval. Figure 4.25 shows the mean wind speed

U and the integral time scale τiu. Using equation [2.39] the integral length scale riu as a

function of time is plotted in figure 4.26. Calculating the mean value r̄iu and the median

value median(riu) of the integral length scale riu shown in figure 4.26 results in:

r̄iu = 12.05m (4.57)

and

median(riu) = 10.67m. (4.58)

It can be observed that U and τiu are inversely correlated to each other in figure 4.25, while

in figure 4.26 it can be seen that the integral length scale has a much more constant behavior.

From this, it can be said that the size of the stream wise mean velocity length scale does

not dependent much on the wind speed. Instead it can be found in Muschinski and Roth

(1993) and Muschinski et al. (2004) that it depends on the height z and it is known as the

largest measurable wavelength or the isotropic cut-off wavelength λiu. It was found to be:

λiu = 4z. (4.59)
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Using a height z=3m results in a wavelength of 12m, which is a close match to the mean

value and of the same order as the median value computed before. Notice, that strictly

speaking the integral length scale riu and the isotropic cut-off wavelength λiu are not nec-

essarily identical, but they should be of the same order of magnitude.
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4.5.7 Isotropy

Kolmogorov (1941a) predicts a 4/3 ratio between the longitudinal and the transverse

correlation functions of the velocity in the inertial subrange for homogeneous and isotropic

turbulence. Using equation [2.54] and Taylor’s hypothesis, equation [2.39] can be written

as:
Dw(τ)

Du(τ)
=

Dv(τ)

Du(τ)
=

4

3
, (4.60)

and
Dw(τ)

Dv(τ)
= 1. (4.61)

Therefore,

C2
w = C2

v =
4

3
C2

u. (4.62)

Inserting equation [4.49] and equation [4.50] accordingly:

Dw(τ)

Dv(τ)
=

Sw(ω)

Sv(ω)
(4.63)

and
Dw(τ)

Du(τ)
=

Dv(τ)

Du(τ)
=

Sw(ω)

Su(ω)
=

Sv(ω)

Su(ω)
. (4.64)

Figure 4.27 shows the ratios of the structure functions. In figure 4.28 the ratios of the

power spectra are shown.

In figure 4.27 it can be seen that the 4/3 ratio is not exactly reached for the smallest time

lag, which could be a result of spatial filtering (as a result of the finite size of the sonic) that

attenuates the small scale turbulence. The sharper decline of Dw(τ)
Dv(τ)

compared to Dv(τ)
Du(τ)

is a

likely result of anisotropy of the w velocity component, due to the presence of the ground.

The velocity components u and v, on the other hand, have more space available than the

velocity component w, since they are oriented into the horizontal plane. Thus the isotropic

behavior shown by Dv(τ)
Du(τ)

is more extended than the one of Dw(τ)
Du(τ)

. A similar behavior can

be seen in figure 4.28. The spike in figure 4.28 in the graph of Sv(f)
Su(f)

at f ≈ 0.02 Hz and
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in figure 4.27 in graph Dv(τ)
Du(τ)

at τ ≈ 1.1 s seems to be from a larger scale effect that is not

directly related to small-scale turbulence.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

5.1 Summary

In chapter one, motivation for turbulence measurements in the surface layer was given

and it was pointed out that the sonic anemometer is a good tool for such measurements.

The historical development of turbulence research was outlined and the current state sum-

marized. Chapter two reviewed the theory of locally homogeneous and isotropic turbulence

and the Monin-Obukhov similarity theory. In chapter three the measurement system was

described. In chapter four, 66 hours of wind velocity and temperature data including two

diurnal cycles retrieved by means of two sonic anemometers and thermometers placed in

the atmospheric surface layer at heights of 3 m and 3.8 m have been analyzed. The data

was divided into 1 hour blocks. Following a rotation from the sonic coordinate system to

a stream-wise coordinate system, a detrending algorithm was applied to the data, so that

only the fluctuating parts were left. The periodograms of the wind velocity components,

Ŝu(f), Ŝv(f), Ŝw(f), and the periodogram of the temperature, Ŝθ(f), were resolved and

presented by applying the FFT to the time series directly on the one hand and by comput-

ing the autocovariance function and using the Wiener-Khintchine relationship on the other

hand. By means of logarithmic-equidistant-averaging of the periodograms the power spec-

tra of the wind velocity components, Su(f), Sv(f), Sw(f), and the power spectrum of the

temperature, Sθ(f), were estimated. The noise variances of the wind velocity components,

σ2
un, σ2

vn, σ2
wn were estimated from the velocity spectra. The noise variance of the temper-
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ature, σ2
θn, was estimated from the power spectra and the autocovariance function. These

noise variances were then used to compute the precision of the velocity and the temperature

measurements. The temporal structure functions Du(τ), Dv(τ), Dw(τ), Dθ(τ) and spatial

structure functions, Du(r), Dv(r), Dw(r), Dθ(r) of the velocity and temperature were com-

puted. These and the power spectra were used (as two different ways) to estimate the struc-

ture parameters C2
u, C

2
v , C

2
w of the wind velocity components and the structure parameter

C2
θ of the temperature. The integral time scales τiu, τiv, τiw of the wind velocity components

and the integral time scale τiθ of the temperature were computed from the autocovariance

function. From the integral time scales, the integral length scales and the spectral widths

were computed. The isotropic cut-off wavelength λc was estimated using the mean and

the median of the integral length scale riu derived for all 66 hours of the data. Finally, the

ratios of the structure functions, Dw(τ)
Du(τ)

, Dw(τ)
Dv(τ)

, Dv(τ)
Du(τ)

and the ratios of the frequency spectra
Sw(f)
Su(f)

, Sw(f)
Sv(f)

, Sv(f)
Su(f)

were plotted against time lag and frequency, respectively.

5.2 Conclusions

We offer the following conclusions:

(1) All power spectra follow a clear -5/3 law for nearly two decades, from about 0.2 Hz

to the Nyquist frequency of about 16 Hz, which is consistent with Kolmogorov-type small

scale turbulence. This finding is in agreement with earlier observations (e.g. Kaimal et al.

(1972), Muschinski et al. (2004)). Below about 0.02 Hz the velocity spectra become flat. It

can be seen that in this range the spectral power density of the vertical wind component w is

about 10 times lower than the spectral power densities of the horizontal wind components

u and v, which can be explained by the suppression of w fluctuations due to the presence

of the ground.

(2) It was found that our precisions (here defined as ±3σ to include 99.7% of gaussian

distributed errors) computed from the power spectra for the wind velocity components (u:
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±0.249m
s

, v: ±0.279m
s

, w: ±0.303m
s

) agree within an order of magnitude to the speci-

fication of the accuracy (≈ ±0.1m
s

) given by the manufacturer. However, our precision

estimation is probabily too conservative. For the precision of the temperature measurement

it was found that the estimation based on the power spectrum and the autocovariance func-

tion agree very closely to each other. It was found to be about ±0.078 K (about 25 times

better then the specified accuracy of ±2 K), which is comparable to (±0.06 K) as found by

Siebert and Muschinski (2001) for a similar, but different type of sonic.

(3) The integral length scales (riu = 12.1 m, riv = 6.0 m, riw = 1.93 m, riθ = 9.24 m) and

the integral time scales (τiu = 4.99 s, τiv = 2.48 s, τiw = 0.81 s, τiθ = 3.82 s) were found

to be consistent with the scale classification given by Orlanski (1975) for atmospheric tur-

bulence, (ri ≤ 20 m and τi ≤ 60 s). It was found that the length scale riu is largest, as

expected. Furthermore, it was found that the length scale riw is on the order of the height

z = 3 m reduced by the roughness length z0.

(4) The isotropic cut-off wavelength was estimated as 12.05 m using the mean of the in-

tegral length scale of u and as 10.67 m using the median of the integral length scale of u.

These are close to the theoretical estimate from Muschinski and Roth (1993) and Muschin-

ski et al. (2004) given as λc ≈ 4z ≈ 12 m.

(5) The temperature and velocity structure parameters computed from the structure func-

tions and the power spectra were found to agree with each other within about 35%. A typ-

ical expected range is given by Ishimaru (1978) on [p.344] as C2
θ = 10−6 K2

m2/3
to 10−2 K2

m2/3

for the temperature structure parameter and C2
u = 10−4 ( m

s
)2

m2/3
to 1

( m
s

)2

m2/3
for the velocity struc-

ture parameter. Similar orders of magnitudes for the structure parameters were obtained by

Muschinski et al. (2004).

(6) A ratio close to 4/3 was observed for the ratio of the structure functions Dv(τ)
Du(τ)

for time

lags τ ≤ 0.06 s and for the ratio of the frequency spectra Sv(f)
Su(f)

for frequencies f ≥ 2 Hz.

However, for the ratio of the structure functions Dw(τ)
Du(τ)

and for the ratio of the frequency

spectra Sw(f)
Su(f)

the approach to the 4/3 ratio is present only at the smallest shown time lag
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and for the highest shown frequency. The reason for this behavior, is the presence of the

ground, which affects w more than u and v.

5.3 Recommendation and Future Work

For future work, the sonics should be used on more flat and homogeneous surface, to al-

low for more detailed statistical investigations. Some possible future experiments include

the installations of several sonics placed at the same height, for the test of Taylor’s hy-

potheses, by comparing the temporal and the spatial ACF or structure functions. Another

experiment would place several sonics at significant different heights to further confirm the

isotropic cut-off wavelength and to retrieve height profiles of velocity, temperature and the

turbulent fluxes.
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